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Abstract 

Advanced radiotherapy is highly dependent on imaging modalities for both patient set-up correction and motion 
management during treatment. The current gold-standard method for tumor motion tracking in the liver resorts to the use of 
X-Ray fluoroscopy for FM identification during treatment delivery.  3D US imaging provides volumetric information, high soft 
tissue contrast and is non-ionizing. When fixated by a robotic arm, it creates a valid and useful tool for real-time tumor 
motion monitoring, while enabling remote continuous image acquisition. This study proposes the development of a robotic 
assisted 3D US image-guided tool for correct patient set-up and accurate tumor motion monitoring during radiotherapy in 
the liver. It focuses, especially, in the use of deformable image registration approaches, hypothesizing that these types of 
algorithms could minimize the impact of tissue deformation resulting in a more accurate displacement measurement. 
Affine, demons and hybrid image registration algorithms were implemented for this purpose. Obtained results show that, 
when a ROI is defined, all methods work exceptionally well, with mean errors bellow 1 mm. Oppositely, when the whole 
volume information is used, demons and hybrid registration methods appear to perform better and more consistently, being 
less influenced by the information contained in the FOV. Demons image registration demonstrates to be the most adequate 
method for the proposed application. When combined with a robotic-US setup for adequate continuous 3D US image 
acquisition it becomes a powerful tool that presents the possibility to overcome the use of FM as surrogates for IGRT 
techniques in the liver. 
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Introduction 

Modern radiotherapy treatments are highly dependent on 
imaging modalities for both patient set-up correction and 
motion management during treatment – Image-guided 
Radiation Therapy (IGRT). Tumors located in organs like 
lung, pancreas, liver, prostate and breast move significantly 
due to reasons such as respiratory and cardiac motion, 
volume variations in surrounding organs (e.g., bladder or 
intestinal filling), tumor growth or shrinkage, tissue swelling 
and patient setup errors, leading to inter and intra-fractional 
uncertainties [1]. 

Inter-fractional changes accounts for variations between 
interval treatment sessions, while intra-fraction motion 
relates for organ or tumor movements that may occur during 
the treatment session [2]. Typical variations in liver motion 
due to breathing range between 5 mm to 35 mm, with most 
of the changes occurring in the Superior-Inferior direction 
(SI), followed by the Anterior-Posterior (AP) direction [3]. 

The introduction of IGRT has improved the accuracy of 
radiation therapy by providing imaging registration based on 
anatomic information. Different imaging systems have been 
used to determine the position of the volumes of interest at 
the treatment stage. Some may only be used immediately 
before treatment delivery (accounting only for inter-fractional 
motion) while others provide monitoring during the whole 
treatment (correcting for intra-fractional uncertainties). 
Among these systems, there are well established 
techniques such as X-ray imaging, in-room Cone-Beam 
Computed Tomography (CBCT), implantation of FM, 
Electromagnetic (EM) beacons, Optical Surface Monitoring 
Systems and US imaging [1, 4–6]. 

The current gold-standard method for tumor motion 
tracking in the liver resorts to the implantation of fiducial 
markers (FM), as surrogates to the tumor, and their 
posterior identification and tracking during treatment 
delivery. However, this approach has some limitations: their 
accuracy is directly dependent on the tumor-marker 
distance [7];  the only real-time available method for FM 
tracking is x-ray fluoroscopy, which uses ionizing radiation 
and does not provide information on soft-tissue; and the 

implantation method by itself is inaccurate if performed 
manually [8, 9]. 

US imaging provides high soft tissue contrast and is non-
ionizing. When coupled with a fixation device such as a 
robotic arm, it provides a valid and useful tool for real-time 
motion monitoring in radiotherapy by allowing continuous 
image acquisition without the physical presence of the staff 
inside the treatment room. The robotic arm motion and force 
control characteristics allow for the reduction of tissue 
deformation due to probe pressure, increasing the 
reproducibility and application scenarios of such systems. At 
the same time the position control feature of the robotic arm 
in use guarantees that the probe remains still during image 
acquisition of moving targets. This is of extreme importance 
for the experiments that will be carried out and for the 
application itself as it ensures proper image acquisition with 
almost no deviation errors induced by probe miss-
positioning or variation. 

Robotic image-guided tools have been proven to be 
useful in percutaneous interventions like biopsies or the 
implantation of FM [10–12], . Nevertheless, these tools also 
allow for direct tissue identification and tracking, potentially 
overcoming the need for the implantation of FM [13, 14]. 

This study proposes the development of a robotic assisted 
image-guided tool capable of providing information for 
correct patient set-up and performing accurate tumor motion 
monitoring, during radiotherapy treatment delivery in the 
liver. The core developments and experiments of this work 
will address the hypothesis that applying non-rigid image 
registration algorithms may be an accurate approach for 
displacement measurements in liver lesions, given that the 
additional Degrees of Freedom (DoF) allow for the 
compensation of tissue deformation and compression 
outperforming rigid approaches and even manual image 
registration in the assessment of tumor motion. 

The presented work aims at the use of 3D ultrasound 
(US) imaging, registered onto a reference US image, 
assisted by a robotic arm, for accurate tracking of identified 
targets within soft tissue such as the liver. Ideally, the same 
ultrasound-robot setup is to be used for tracking the organ in 
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real-time in order to monitor target motion during external 
beam radiation therapy. 

Background 

1. US Imaging 

US imaging is a widely used approach for imaging targets 
outside the skull and lung [13]. It enables rapidly developing 
two-dimensional (2D), three-dimensional (3D) and four-
dimensional (4D) anatomical and functional imaging 
capabilities for inter-fraction and intra-fraction imaging [5]. It 
is relatively inexpensive and easy to use, and it can have a 
diagnostic value comparable to MRI or CT imaging. Plus, 
this modality is non-ionizing and provides real-time 
volumetric imaging with excellent soft-tissue contrast. 
Recently, real-time US imaging in 3D was developed. With 
continuous scanning over time, 4D monitoring of tissues 
during treatment is possible [15]. This enables real-time 
automated structure segmentation and motion 
compensation during treatment, facilitating adaptive 
treatment correction [14]. 

US IGRT systems can be divided in two categories: inter-
modality and intra-modality systems. Inter-modality systems 
compare the contours of a different modality reference 
image (i.e. CT or MRI), acquired prior to treatment planning 
(simulation stage), to US images acquired at the treatment 
moment. The intra-modality approach compares the 
treatment US image with a reference US image acquired at 
the time of simulation [5, 16]. 

The first widely adopted inter-modality and inter-fractional 
US systems for IGRT were the B-Mode Acquisition and 
Targeting (BAT) system (NOMOS Corp., Cranberry 
Township, PA), and the SonArray system (Varian Medical 
Systems, Palo Alto, CA) [17–21]. These systems use a 2D 
diagnostic US imaging and an optical or mechanical means 
for tracking the position of the US probe with respect to the 
radiotherapy treatment delivery machine (Linear Accelerator 
– LINAC). In both, the patient is positioned with respect to 
the LINAC prior to beam delivery by matching the planning 
CT volume to US images spatially localized in the LINAC 
frame [13]. 

Several studies have compared BAT and SonArray 
positioning accuracy with X-ray FM positioning [22–24]. 
Although initial studies regarding the BAT and SonArray 
systems demonstrated the promise of improved soft tissue-
based prostate positioning, cross-examination with X-ray 
fiducial imaging revealed systematic biases. These biases 
are partially due to the reliance on inter-modality matching of 
US and CT image information. For example, prostate 
volumes derived from CT scans are consistently larger than 
those derived from US images because of differing physical 
image contrast mechanisms and the inability of CT to 
differentiate structures accurately at low contrast [13, 25]. 

A comparison of intra-modality US imaging and CT scans 
showed no significant differences in any direction, based on 
this, it was concluded that intra-modality-based positioning 
is more accurate than inter-modality positioning. Therefore, 
intra-modality image matching has been recommended to 
minimize patient positioning error in US-guided radiotherapy 
[26]. 

The Clarity System (Elekta AB, Stockholm, Sweden) is an 
inter-fractional system that leverages intra-modality image 
matching instead of the inter-modality matching technique 
used by BAT and SonArray [15]. Since intra-modality image 
matching has been shown to improve accuracy over inter-
modality matching, as mentioned before, the Clarity system 
should theoretically position patients more accurately than 
the BAT system or SonArray system. 

Although better than inter-modality systems, conducted 
studies have shown some concerning results regarding 
Clarity’s accuracy due to its inter-fractional approach, 
highlighting the disadvantages of such US image guidance 
systems [13, 19, 27, 28], revealing that Intra-fractional US 
guidance systems are the next step in the evolution of US 
imaging for radiotherapy, providing real-time, volumetric, 
markerless target tracking [13]. The foundation of an intra-
fractional US guidance system is the utilization of a 
hardware device to maintain the US probe in imaging 
position during therapy while the staff is outside the 
treatment room, safe and protected from radiation exposure. 
It must hold the probe in a way that maintains the therapy 
target within the US imaging Field of View (FOV) throughout 
treatment while minimizing possible interference with the 
LINAC, the patient’s body, and treatment beams. 

1.1. Static Devices 

The Clarity Autoscan System (Elekta AB, Stockholm, 
Sweden) was the first system capable of intra-fractional 
imaging. The Clarity Autoscan is built upon the original 
Clarity System, replacing the 2D US imaging system with a 
mechanical “wobbler” 3D/4D US probe and adding a 
hardware fixture for hands-free transperineal prostate 
imaging. The hardware is a simple, manually-operated 5 
DOF fixture that is mounted to a plate on the treatment 
couch between the patient’s legs, fixating the US probe into 
imaging, thus freeing the staff to exit the treatment room 
during treatment delivery. The 3D/4D probe enables 
volumetric US images to be automatically captured without 
physically moving the US probe head. 

Clinical studies of the system are underway to 
characterize the performance of the Clarity Autoscan 
system for intra-fractional monitoring [15, 19]. 

1.2. Robotic Devices 

Stanford Prostate and Abdominal Imaging Robots 

Schlosser, et al. [29] were the first to demonstrate the 
feasibility of robotic intra-fractional US imaging in the context 
of radiotherapy guidance. The authors developed and 
evaluated a robotic device designed for controlling 2D 
transabdominal US imaging of the prostate, demonstrating 
that gantry collisions are avoidable, that stable remotely-
controlled prostate imaging is achievable in healthy human 
subjects over 10-minute time periods, and that robotic 
performance is not degraded during operation of a 15 MV 
radiation beam. 

A second-generation custom-designed robotic device 
based on learnings from the previously described prototype 
was then developed by Western, et al [13]. The goal of the 
research effort is to produce a simple, compact, human-safe 
robotic design that enables 3D/4D US imaging of any 
abdominal radiotherapy target, actively controls probe force, 
allows rapid and repeatable positioning of the US probe, 
and eliminates metal in areas exposed to CT/therapy 
radiation. 

The robot has demonstrated successful imaging over 
extended time periods on the prostate, pancreas, liver, and 
kidneys of healthy volunteers under informed consent. 

Johns Hopkins Abdominal Imaging Robot 

Sen, et al. [30] have developed a custom-designed robotic 
manipulator for US-guided radiotherapy, focusing on 
overcoming inconsistencies in tumor localization between 
the planning and treatment phases due to tissue 
deformation induced by probe pressure. 

In ex vivo experiments using a bovine liver fixed in gelatin 
with implanted fiducials, the system demonstrated 
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repeatable arm placement with minimal effect on 
displacement of the fiducials. Later, in vivo experiments 
conducted on a dog demonstrated mean 3D reproducibility 
of 0.6 to 0.7 mm, 0.3 to 0.6 mm, and 1.1 to 1.6 mm for the 
prostate, liver, and pancreas, respectively, under position 
control and controlled ventilation [31]. 

Force control proved to be less reproducible however, 
indicating that position control rather than force control 
should be used for robotic substitution of real and model 
probes. Results indicated that the system shows promise for 
monitoring real-time organ motion, particularly under 
conditions of minimal probe pressure. 

University of Lubeck Robotic Platform 

The University of Lubeck has developed a robotic US 
probe positioning system for CyberKnifeTM radiotherapy 
using an off-the-shelf robotic arm (Viper S850, Adept 
Technology, Inc.) [32]. The robot has six actively-controlled 
DoF, enabling probe placement on nearly any part of the 
patient’s body. Continuous high-quality imaging was 
confirmed by showing that image structure/entropy stayed 
above the threshold for continuous target tracking of heart 
volumes at least 95% of the time in three healthy human 
subjects over 30-minute time intervals [32]. An updated 
version of the system uses a KUKA (Augsburg, Germany) 
7-axis lightweight robot with integrated force control. In 
addition to manual 6-DoF positioning, force and image-
based positioning strategies have been developed.  

2. Automatic Tissue Tracking 

All the systems previously described aim at intra-fractional 
treatment intervention. However, none of that would be 
possible without imaging methods capable of processing 
the acquired US images in real-time in order to extract soft-
tissue motion information. Some studies have already been 
developed to assess the feasibility of tissue tracking 
algorithms for both 2D and 3D/4D US imaging. 

Schlosser et al. conducted two different studies regarding 
the application of 2D US in monitoring soft tissue 
displacement [13, 33]. Both demonstrated that 2D US 
monitoring for displacement of internal features is feasible 
and even superior to tracking of an external surrogate [13]. 

Several different studies were carried out regarding the 
application and feasibility of 3D/4D US tissue tracking 
algorithms [33–38]. Generally, all proved that such 
algorithms are reliable and applicable. 

Kubota, et al. studied the application of such algorithms for 
monitoring organs affected by respiratory motion. This 
proved to be feasible with an average tracking accuracy of 
1.54 ± 0.9 mm (accuracy being defined as deviation from 
the center of the region of interest and the center of the 
target) [35]. 

Bruder, et al. proved the successful employment of an 
algorithm based on the matching of a current US volume 
and a template [39]. 

Some studies were specifically applied to the evaluation of 
accuracy and precision of real-time 4D US tracking on liver 
motion [36, 38, 40]. For instance, Harris et al. used a 
mechanically swept probe on both a tissue-mimicking 
phantom and on in vivo liver motion of healthy volunteers: 
for phantom-based experiments, accuracy and precision 
(Root Mean Square [RMS] error and Standard Deviation 
[SD]) were found to be 0.78 mm and 0.54 mm, respectively; 
for in vivo measurements, mean absolute distance and 
standard deviation of the difference between automatically 
and manually tracked displacements were less than 1.7 mm 
and 1 mm, respectively, in all directions (left–right, anterior– 
posterior and superior–inferior). Good agreement between 

automatically and manually tracked displacements indicates 
that 4D ultrasound-based motion tracking has potential for 
image guidance applications in radiotherapy [13, 38]. 

3. Image Registration and Spatial Transformations 

Image registration is the process by which two images are 
aligned, transforming different data sets into one coordinate 
system.  In other words, it is the process of determining the 
correspondence between two different images (acquired in 
different moments in time, from a different angle or with 
different conditions), typically between the reference image 
(fixed) and the target image (moving), and recovering the 
geometrical or spatial transformation that aligns both images 
[41–43]. 

A spatial transform (𝐔�) plays the role of representing 

registration solutions in a precise manner, describing a 
mapping between the coordinate system of one image and 
that of another image. 

There are several terminologies that refer to different 
properties of 𝐔� [43, 44]: 

Smoothness – A mapping 𝐔�is said to be smooth if all of 

its partial derivatives of a certain order exist and are 
continuous. Properties of 𝐔�affect the appearance of the 

image to which it is applied.  Generally, this property is 
desired as it directly affects the smoothness of the image 
on which it is applied. 

Bijectivity – 𝐔� is said to be bijective if it consists in a one-

to-one mapping. Bijectivity ensures that the folding of a 
space does not happen as multiple points cannot be 
mapped into the same point. Depending on the 
application, this property, may or may not be required. 

Invertibility – 𝐔�is said to be invertible (or homeomorphic, 

or topology-preserving), if it is bijective and continuous 
(and its inverse also). When 𝐔� is both smooth and 

invertible, it is called diffeomorphic. A diffeomorphic 
transform is required when one needs to maintain the 
connectivity between neighboring anatomical structures 
after registration. 

In order to parametrize 𝐔�, spatial transformation models 

(transforms) are often used. The ones commonly used for 
image registration are categorized as either linear or 
nonlinear and they differ in terms of their DoF, which in turn 
determine the different types of geometric distortions that 
they induce on images [42–45]. 

Linear transforms – Include translation, rotation, rigid, 

affine and projective. A rigid transform allows for 
translations and rotations only; an affine transform allows 
for rigid as well as scale and shear (distortions that 
preserve parallelism of lines); a projective transform allows 
for all distortions that preserve collinearity (lines remain 
straight after distortion). 

Nonlinear transforms – Allow for more localized 

deformations. These transformations are capable of 
locally warping the target image to align with the reference 
image – mapping curves to lines. In general, these can be 
divided into two categories: 
• Physical models - Derived from the theory of continuum 

mechanics (elasticity, optical flow and fluid flow). 
• Function representations – Originate from interpolation 

and approximation theory, using basis function 
expansions to model the deformation (radial basis 
functions, B-splines and wavelets). 

4. Image registration algorithms 

An image registration algorithm consists in four main 
components: the source of information (feature or intensity 
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based), the similarity measure, the optimization method and 
the transformation model [41]. 

Regarding the source of information there are two main 
approaches: feature-based and intensity-based. Feature-
based image registration extracts a set of geometrical 
features from one image and looks for the corresponding on 
a second one. These features include corners, landmarks, 
line segment curves and surfaces. In medical applications 
this features may represent distinct anatomical regions or 
FM. One advantage of feature-based methods is their low 
computational load – after identifying the geometrical 
features, allows image intensities are no longer required for 
the registration process. One disadvantage of these 
methods is that they rely on successful feature identification 
and extraction and require a long pre-processing step [41, 
46, 47].  

Intensity-based image registration aligns images directly 
based on their intensities and has recently become the most 
widely used registration basis for several applications. The 
available intensity information at each voxel allows for more 
accurate estimation of local non-rigid deformations and 
allows for registrations taking into account all the available 
image information. In its simplest form, the registration 
transformation is determined by iteratively optimizing a 
similarity measure calculated from all voxel values [41, 45, 
48]]. 

Similarity measure is usually an objective function that 
reaches a plateau when two images verify a certain 
relationship.  Examples of popular similarity measures are 
the mean square differences, sum-of-squared-differences or 
mutual information [49]. 

The optimization method is an algorithm to find a set of 
parameters that optimize a given similarity measure. 
Standard optimization methods are often employed 
including Gradient Descent, Quasi-newton, Stochastic 
Gradient Descent or Evolutionary methods [48, 49]. 

Finally there is the need to consider the transformation 
model, responsible for defining the way to deform the image 
sets. These are typically divided into two large groups: rigid 
or non-rigid.  Rigid mappings may be defined as geometrical 
transformations that preserve all distances, the straightness 
of lines and all nonzero angles between straight lines. This 
type of transformation is always global as the resulting 
transformations are equally applied to the whole image. The 
most simple and common transformation model is rigid 
(allows translation and rotation). Another global 
transformation type is the affine, which allows for scaling 
and shearing. The shearing capabilities of the affine model 
make it a non-rigid transformation however, due to its 
simplicity and linear preserving characteristics, affine is often 
considered as rigid. Other examples of more complex non-
rigid transformation models are basis function expansions 
(ex: radial basis functions or B-splines) or derived from the 
theory of continuum mechanics, such as elasticity or optical 
flow. These models are able to map straight lines to curves 
and locally warping the target image to align with the 
reference image. These models are able to map straight 
lines to curves and locally warping the target image to align 
with the reference image [41–44, 46, 47, 50]. 

Implementation 

1. 4D Liver Phantom 

In order to successfully achieve the proposed goal, 
adequate images of the anatomical ROI needed to be 
acquired, either from a live voluntary or from a realistic 
anatomical model of the ROI. 

Considering the possibility that, during the development of 

the US image registration application, the author would 
need to make multiple tests with different acquisition types, 
the usage of a live voluntary would create great difficulties 
due to availability and variability. Also, the existence of an 
identifiable liver lesion was mandatory and thus the 
voluntary would necessarily have to be someone with a 
medically diagnosed liver tumor, which would create even 
greater complications. 

Developing a proper anatomical model would ideally solve 
availability and variability issues. It would also allow the 
author to acquire images under controlled conditions, and 
with exact knowledge of lesion location and movement. 
Even though this was the selected method, it was required 
that the model would meet certain specifications in order to 
be as realistic as possible: 

• Medium echogenicity consistent with human soft tissue; 

• Lesion echogenicity consistent with liver tumors; 

• Breathing alike movement and effect on adjacent tissue; 

• Tissue compression rate similar to the human tissue. 

In order to fulfill the requirements stated above, an 
anatomical model, from now on referred to as phantom, was 
developed, comprising: 

1. An echogenic media simulating the liver soft tissue 
elastic behavior and imaging characteristics - US 
phantom specific material. 

2. Implanted inserts to simulate US imaging characteristics 
of liver tumors. 

3. A test lung silicon bag (artificial lung), that would 
simulate lung behavior - compressing the surrounding 
media when inflated and decompressing when deflated, 
causing the lesion to change in position and shape 
accordingly. 

4. A Bi-level Positive Air Pressure (BiPAP) ventilator that 
allows the user to pump air in and out into the balloon 
and the phantom (Figure 3). 

This resulted in phantom schematized in Figure 1 and 
illustrated on the Figures 2 and 3. 

1 
3 

2 

5 4 

Figure 12 - 3D Schematic of the final Liver Phantom, where 1 is the Bi-
PAP, 2 is the tube that carries air into the artificial lung, 3 is the soft tissue 
US medium, 4 is the artificial lung and 5 corresponds to liver lesions with 

appropriate echogenic behavior. 

Figure 21 – Picture of the final liver phantom. 

Figure 3 - Ultrasound image of the two targets inserted into the Liver 
Phantom. Targets highlighted with a red square. 
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To facilitate the identification of the inserted lesions and 
also in order to add rigid features that would be accurately 
identified on all image acquisitions, one FM (1 mm x 3 mm) 
was implanted in the center of each lesion with the 
assistance of a specific needle and guided by the US 
image. 

By coupling a medical ventilator to the inflatable artificial 
lung, we not only assured a human like behavior but also 
gained the ability to adjust different values such has 
breathing frequency and amplitude. At the same time, the 
elasticity of the material used for the medium assured that 
the inserted lung would be able to inflate and deflate 
causing the lesions to move and compress simultaneously 
changing in position and shape much like the functioning of 
the human body. 

2. US Acquisition System 

For this project, the available 3D Ultrasound system 
existing in the Surgical Robots Lab (SRL) was used, the 
Ultrasonix SonixTABLET. It consists in a computer with two 
dedicated ports for the insertion of US transducers and 
specific software for the visualization of the acquired 
images. Besides the usual Clinical Mode it also allows for 
operation under a Research Mode. Through a variety of 
Software Development Kits (SDK), direct access to the US 
images and to the acquisition parameters is granted to the 
user. 

Propello was the chosen SDK for this project as it is 
specifically designed to manipulate 3D integrated 
transducers, communicating with the wobbling mechanism 
while US images are acquired, accessing the images from 
cine memory. Thanks to the two input and two output digital 
signal ports this open source software allows the triggering 
or the detection of an image acquisition, respectively. An 
output signal can be used to synchronize other devices to 
the image acquisition, namely, to retrieve the relative 
position of the ultrasound probe. 

Additionally the 4DC7-3/40 Convex 4D US transducer 
was used. This transducer is specific for Abdominal, 
Gynecological and Pediatric applications and features a 
frequency range of 7 MHz to 3 MHz, a focal range of 5 cm 
to 24 cm and a 79º image field. 

3. Kuka Lightweight Robot  

Born from a partnership between Kuka Robotor Gmbh 
and the Institute of Robotics and Mechatronics of the 
German Aerospace Center (DLR) the KUKA Lightweight 
Robot (LWR) belongs to a revolutionary generation of robots 
whose applicability is mostly related with aiding and 
assisting humans in general tasks either at home, office or 
public spaces such as hospitals. 

This LWR is a seven degrees-of-freedom (DoF) robotic 
arm with flexibility to work in cluttered and unstructured 
workspaces where there is little information about the 
surrounding environment. One of the DoF is redundant and 
helps avoiding typical singularities of 6-axis kinematic 
systems [51]. Furthermore it makes it reconfigurable while 
holding the pose of the end effector. Integrated force torque 
sensors allow for hands on cooperative control including 
impedance control and virtual fixtures [52]. 

The designation of “lightweight robot” comes from the fact 
that the weight was severely reduced to the limits of what is 
technically possible, unlike previous generations of robots 
whose high position accuracy requires high stiffness at the 
cost of high robot mass relative to its payload. The low mass 
has consequences such as decisively improving robot’s 
dynamic performance and reducing power consumption. 
Having a mass of 16 kg, the KUKA LWR is designed to 

handle up to 7 kg at low velocities [51, 52]. 
KUKA LWR can work on gravitic compensation, joint 

position control or joint and Cartesian impedance control. As 
such, it is suitable for accurate positioning, but also for more 
compliant interaction with the user, making it an interesting 
device for the field of robot assisted surgery and image 
guided applications. As the arm already provides the 
required compliance for additional tools an ultrasound probe 
can be mounted on the robot’s end-effector and be used for 
medical image acquisition, where the medical staff has the 
ability to move the attached ultrasound freely as the robotic 
arm tracks and fine tunes its position. Tracking the pose of 
the probe for the acquired images is important for the 
volume reconstruction of the 3D US scan and determine its 
position in order to accurately allow for shift estimation 
between two different volumes [51–53]. 

4. NDI Polaris Spectra 

The Polaris® optical tracking solution provides 
exceptionally accurate and reliable 3D tracking of simulated 
medical tools (via attached markers) over a large 
measurement volume. The Polaris emits infrared light to 
wirelessly detect and track a tool’s position and orientation in 
all six DoF. The position and orientation of each medical tool 
is tracked and displayed within the simulation software in 
real time. Data integration occurs seamlessly and instantly, 
providing uninterrupted tool interaction [54]. 

The goal of optical measurement is to calculate the 
location and orientation of an object or tool within a defined 
coordinate system, using a position sensor to detect 
infrared-emitting or retro-reflective markers affixed to a tool 
or object. The position sensor calculates the position and 
orientation of the tool based on the information the position 
sensor receives from those markers [55, 56]. 

NDI Polaris Spectra uses optical measurement and is 
integrated into medical solutions that have been widely 
adopted for use in computer-assisted therapy applications 
covering a broad spectrum including implant placement, 
ergonomic studies, neurosurgery and radiation therapy. For 
example, using a specially marked imaging device, such as 
an ultrasound probe, to locate the tumor would allow the 
ultrasound probe to be tracked by the Polaris Spectra 
Position Sensor, resulting in the ability to identify the exact 
location and orientation of the ultrasound probe [57]. 

For this particular application, Polaris was used for two 
different purposes, on different development steps. On a 
first period, it was used to acknowledge the position of the 
US probe during free-hand manipulation in order to acquire 
the first set of images for testing and optimization of the 
image registration algorithms. On a second phase, it was 
used to calibrate the assembling of the ultrasound probe to 
the KUKA’s LWR end-effector and define the probe’s 
position in the robots’ reference frame. 

5. Integrated System 

The following steps describe the communication setup 
between all the hardware components previously described, 
Figure 4 is a schematic representation of the described 
protocol: 

1. A MATLAB program running on the host computer 
commands the US image acquisition system to start 
the acquisition of a number of volumes through TCP; 

2. Running simultaneously on the host, a Simulink 
program reads the poses from the Polaris optical 
tracking system and sends it to the target PC – in this 
case only required for free-hand probe manipulation 
and calibration of the US probe to KUKA’s  spatial 
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referential; 

3. The US system enables the output trigger port and 
commands the wobbler of the probe to the end of its 
FOV and then starts acquiring images and stepping 
the motor; 

4. At the end of each image acquired, the image is sent 
through TCP back to the host and simultaneously an 
output trigger is sent from the SonixTablet BNC port to 
the data acquisition board on the KUKA Target PC; 

5. On the KUKA Target PC, for each trigger detected, the 
current pose of the KUKA LWR end-effector is sent to 
the host computer through User Datagram Protocol 
(UDP). In case Polaris is being used, the poses 
acquired by the optical tracking system are sent back 
to the host; 

6. The host computer associates each image to the pose 
sent by the KUKA and stores the information; 

7. When all the requested images are sent, the US 
system stops the image acquisition and disables the 
output trigger port. 

Whenever the US system receives the command to 
acquire new images it stops all running acquisitions. At this 
moment, the output trigger port allows synchronization with 
external devices, in this case, the KUKA LWR. The motor 
position of the probe is set to one end of the defined FOV 
and the process of image acquisition begins, acquiring one 
frame and stepping the motor to the following position in a 
fan shape until the other end of the defined FOV. The overall 
path of all the motor steps corresponds to the acquired 
volume. The trigger output is disabled once the specified 
number of acquired volumes is achieved. 

6. Robot-US probe holder 

In order to achieve a successful holder for robotic-guided 
US imaging acquisition system, the ultrasound probe must 
be attached to the robotic arm in a precise and safe manner. 
To achieve this assembly a coupling holder was designed 
using SolidWorks

®
.  

This holder would allow for the attachment of its base to 
the robotic arm and should also fasten to the already 

existing US probe hoop, as demonstrated on the right in 
Figure 6. 

The manufacturing of this apparatus was accomplished 
via 3D printing using Polilactic Acid (PLA), well-known 
biodegradable polyester that has been widely used in 
medical applications. 

With its low melting temperature (Tm) at approximately 
180 ºC, PLA is easy to manipulate and to use in 3D printing 
applications being ideal for fast prototyping. It has proven 
appropriate for the experimental laboratorial framing of this 
project nevertheless due its low glass transition temperature 
(Tg), at approximately 55 ºC, this thermoplastic material 
would present some limitations in a clinical setting such has 
the impossibility for high temperature sterilization, for 
example [58]. 

7. 3D Image Registration Tool 

MATLAB was the selected software to implement the 
proposed application. It already comprises several of the 
necessary functions such as image registration algorithms 
and 2D image fusion display. It does not include, however, 
any 3D image fusion display function, even though the 
existing image registration algorithms are suitable for 3D 
usage. Consequently, for the appropriate development and 
validation of the proposed application, an image registration 
tool needed to be developed encompassing manual upload 
of the reference and acquired image volumes (fixed and 
moving, respectively), image pairing and displaying in 3D, 
image cropping for user selected ROI definition, application 
of the implemented image registration algorithms, an option 
for manual image registration and visualization of the 
registration results. Lastly, a function was added in order to 
save the archived outcomes for each performed test. 

The final graphical appearance of the previously 
described tool can be seen in Figure 7. 

For the image registration functionality of the developed 
tool 4 options are available. From the available options, the 
Manual Image Registration (MIR) button allows the user to 
manually shift the position of the moving image in X, Y and 
Z directions. This option was added in order to be used as a 
metric reference to evaluate the performance of the 
implemented algorithms and also to compare manual 
registration to the other modalities. The remaining options 
are Affine Image Registration (AIR), consisting in an affine 
transformation optimized for the image modality in use, 
Demons Image Registration (DIR) consisting in a demons 
algorithm and a Hybrid Image Registration (HIR) comprising 
a 2 step registration process that starts with an affine 
transformation followed by the DIR algorithm optimized to 
work sequentially. 

Figure 4 - Schematic of the Integrated System 

Figure 6 - Picture of the 3D printed holder and its assembly to the US 
probe hoop (on the right). 

Figure 7 - Graphical appearance of the 3D image registration tool, 
developed in MATLAB. 
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The two core algorithms underneath this application are 
the AIR and DIR. Further explanation of their functioning, 
principle and implementation follow bellow. 

7.1. Affine Image Registration (AIR) 

This function estimates the geometric transformation that 
aligns two 2D or 3D images using intensity based 
registration.  

As previously explained, intensity-based automatic image 
registration is an iterative process. It requires the user to 
specify a pair of images, a metric, an optimizer, and a 
transformation type. The metric defines the image similarity 
metric for evaluating the accuracy of the registration. This 
image similarity metric takes two images and returns a 
scalar value that describes how similar the images are. The 
optimizer defines the methodology for minimizing or 
maximizing the similarity metric. The transformation type 
defines the type of 2-D transformation that brings the 
misaligned image (moving image) into alignment with the 
reference image (fixed image). 

The process begins with the transform type that has been 
specified and an internally determined transformation 
matrix. Together, they determine the specific image 
transformation that is applied to the moving image with 
bilinear interpolation. 

Next, the metric compares the transformed moving image 
to the fixed image and a metric value is computed.  

Finally, the optimizer checks for a stop condition, a point 
during the process where the error in one iteration or the 
error improvement between iterations is below a certain 
threshold or when the specified maximum number of 
iterations has been reached. If the stopping criterion is not 
met, the optimizer adjusts the transformation matrix to begin 
the next iteration. In this case, an affine transformation will 
be applied. This method has been used in the registration of 
ultrasound images since the low resolution and low signal-
to-noise ratio of the ultrasound images make the accurate 
registration more difficult when more complex 
transformations are used. Figure 8 demonstrates a typical 
algorithm used in intensity-based registration methodologies 
[45]. 

7.2. Demons Image Registration (DIR) 

Demons algorithm is a type of optical-flow transform 
based on a diffusion process [45]. In this process, voxels are 
pushed into or out of object boundaries to allow for image 
matching, by treating images as isointensity contours and 
computing demon forces to push these contours in their 
normal direction to encourage image alignment [43].  

Demons algorithm preforms exceptionally fast, and is very 
efficient on real 3D data [59]. The method uses an 
approximate elastic regularizer to solve an optical flow 
problem, where the ‘‘moving’’ images level sets are brought 
into correspondence with those of a reference or ‘‘fixed’’ 
template image [60]. 

A disadvantage of this model is that there are no 
constraints on the displacement and it does not necessarily 
preserve the topology. In practice, the algorithm computes 
an optical flow term which is added to the total displacement 

(initially zero). To reduce the effects of noise, the 
accumulated displacement field is then smoothed by 
Gaussian convolution. The algorithm iterates over time, 
during each iteration an incremental displacement field is 
determined and the source image is resampled for the next 
iteration [42]. 

As a non-parametric method, the implementation of 
demons algorithm is relatively simple, in the way that only a 
few parts of the process might be optimized, more precisely 
the number of multi resolution pyramid levels, the number of 
iterations performed at each pyramid levels, and the amount 
of diffusion-like regularization that is applied to the standard 
deviation of the Gaussian smoothing to regularize the 
accumulated field at each iteration - smaller values result in 
more localized deformation in the output displacement field. 

As previously explained, demons algorithm focus on local 
transformations in order to achieve the image alignment - 
voxels are pushed into or out of object boundaries to allow 
for image matching. This results in a calculated 
transformation for each pixel and is therefore difficult to 
quantify the target displacement based on the resultant 
image displacement field. In order to quantify the translation 
of the lesions an approach was implemented taking 
advantage of known fixed structures or points that may exist 
within the lesions. By selecting a point in the fixed image the 
displacement associated to its corresponding voxel and its 
immediate voxel neighbors, in all directions, is calculated. 
Next, the mean displacement of this group of voxels is 
calculated functioning as a surrogate for the lesion 
displacement in X, Y and Z. 

Results 

1. Data Processing 

For the test images acquisition the US-Robot setup was 
used, as shown in Figure 9. At the same time, this was also 

a means to test the efficacy of the robot setup, using 
KUKA’s positioning control in order to continuously acquire 
US image volumes while maintaining the probe in the 
defined position. This ensures that both the fixed and 
moving images are positioned in the same referential and 
therefore displacement estimation can be performed more 
accurately. 

As stated on the rationale of this work, the main tests and 
experiments that were executed aimed at testing the 
performance of non-rigid image registration algorithms for 
accurate measurements of liver tumor displacements. 
When tracking for tumor motion in IGRT techniques the 
most important deviations occur in the superior-inferior, 
anterior-posterior and medial-lateral directions, 
hierarchically.  Deviations in these directions are therefore 
expressed by translational transformations. Nevertheless, 
these translations may be influenced by other type of 
transformations caused by tissue deformation such as 

Figure 8- Diagram of the typical algorithms used for intensity-based 
registration methodologies.[62] 

Figure 9- 3D US Image acquisition of the 

liver phantom using the US-Robot setup. 
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compression or stress [1]. The formulated hypothesis is 
based on the concept that by allowing more degrees of 
freedom to the image registration algorithm the impact of 
tissue deformation could be minimized resulting in a more 
accurate translational displacement measurement. 

For the evaluation of the image registration algorithms 
performance an error metric was used resorting to the 
estimated mean points (MP) of the implanted FM (fixed MP 
and moving MP in the fixed and moving images, 
respectively). This error was estimated by applying the 
achieved translational shift (from the moving image to the 
fixed) to the fixed MP. This point was then plotted in the 
moving image and the difference between it and the moving 
MP was calculated, resulting in the error associated to the 
algorithm under test. Figure 10 is a schematic 
representation of the described process. 

Due to the clinical purpose of the BiPAP ventilator used to 
impose a physiological behaviour to the 4D liver phantom 
there is a limit to the pressure levels that is possible to 
pump, consequently this created a limitation on the the 
amount of movement that could be imposed to the tissue 
mimicking phantom. To overcome this issue and allow for 
the implementation of bigger displacements a in-exsufflator 
device was used. Thus, being possible to test the system in 
more extreme conditions. 

With the assitance of the previously mentioned device, 
four stages of pressure were used to create different moving 
images (25 cmH2O, 35 cmH2O, 45 cmH2O and 55 
cmH2O), the increament in pressure level corresponds to 
an increase on the imposed displacement and deformations 
(Figure 11). The fixed images were acquired with 0 cmH2O. 
Additionally an extreme deformation test was added in order 
to evaluate the performance and response of the 
implemented algorithm to higher levels of deformation. 

The achieved outcomes will be presented and discussed 
on the following paragraphs. 

2. Data Analysis 

2.1. Whole Volume Registration 

Table 1 shows the registration error for each algorithm in 

all displacement tests, for both lesions, taking the entire 
image into account for the registration process. In Table 2 
the mean error for each algorithm is calculated as well as 
the respective standard deviation. 

By analyzing the values above it is possible to quickly 
realize the expressive errors from the  AIR algorithm, 
especially in the SI direction with a mean error of -5,97 mm 
± 3,15 mm. DIR performs generally well, displaying its 
highest error in the AP direction, on the 0-55 (cmH2O) test 
which is the highest tested level of displacement. Globally, 
DIR demonstrates a steady and robust performance with 
mean errors well under 1 mm. Simultaneously, HIR also 
demonstrates good performance even though mean errors 
are slightly superior when compared to DIR algorithm. 

2.2. Adjusted ROI Registration 

Similarly to the previous section, Table 3 shows the 
registration error for each algorithm in all displacement tests, 
for both lesions. In this case only an adjusted ROI is 
considered in the registration process. In Table 4 the mean 
error for each algorithm is calculated as well as the 
respective standard deviation for the adjusted ROI scenario.  

Opposite to what was found in the previous scenario, all 
registration algorithms achieve optimal performances when 
a ROI is defined encompassing the lesion boundaries. In 
this case, the AIR has similar results has the DIR method 
and punctually outperforms the last. Globally all the tested 
methods achieve mean errors inferior to 1 mm, in all 
directions.  

2.3. Deformation Test 

In Table 5, the registration errors achieved from the 
deformation test are detailed, for both scenarios, all 
registration methods and for lesions 1 and 2.  

Figure 10 - Schematic representation of the image registration error 
calculation process. 

Figure 11 - Initial displacement illustration for the 2 lesions and pressure 
displacements. Fixed image displayed in green and moving in purple. 

Table 1 - Registration error for each algorithm in all displacement tests, for 
both lesions, considering the entire volume. 

SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm)

AIR -2,61 -1,01 1,40 -4,14 -0,80 0,50 -7,48 -2,23 -0,45 -9,80 -2,73 -1,94 

DIR 0,13 -0,40 0,49 0,57 0,35 -0,28 0,02 -0,51 -0,93 0,71 -0,50 -0,53 

HIR -0,68 -0,59 0,52 -0,73 0,14 -0,38 -1,69 -0,83 -1,09 -0,69 -0,73 -0,86 

MIR -1,00 -0,68 -0,36 -0,88 0,20 -0,50 -0,17 -0,85 -1,00 0,45 -0,32 -0,50 

AIR -2,69 -0,49 0,93 -3,35 -1,01 -1,99 -7,46 -1,50 -3,02 -10,19 -1,29 -1,01 

DIR -0,59 -0,31 -0,89 1,06 -0,84 -1,10 0,85 -1,41 -0,96 1,08 -1,40 -0,57 

HIR -0,74 -0,42 -0,68 0,40 -0,91 -1,31 -0,07 -1,30 -1,07 -1,18 -1,11 -0,42 

MIR -0,53 0,03 0,50 0,03 0,06 -1,00 0,01 -0,41 -1,00 0,66 -0,18 -0,50 

0-25 (cmH20) 0-35 (cmH20) 0-45 (cmH20) 0-55 (cmH20)

L
e

s
io

n
 1

L
e

s
io

n
 2

Whole Image

Table 2- Mean error for each algorithm and respective 
standard deviation for the whole volume scenario 

SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm)

AIR -5,97 -1,38 -0,70 3,15 0,75 1,57

DIR 0,48 -0,63 -0,60 0,58 0,59 0,52

HIR -0,67 -0,72 -0,66 0,63 0,44 0,58

MIR -0,18 -0,27 -0,55 0,59 0,37 0,50

Mean Std Dev.

Table 3 - Registration error for each algorithm in all displacement tests, for both 
lesions, considering a ROI adjusted to lesion boundaries. 

SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm)

AIR 0,18 -0,33 -0,23 0,25 -0,36 -0,11 -0,38 -0,55 0,06 -1,02 -0,83 -0,62 

DIR 0,31 -0,21 -0,69 0,42 -0,36 -0,64 -0,28 -0,67 -0,52 0,23 -0,67 -0,05 

HIR -0,04 -0,33 -0,66 0,04 -0,55 -0,68 -0,70 -1,05 -0,65 -1,20 -1,61 -0,33 

MIR 0,61 0,00 -0,50 0,01 0,10 0,00 -0,13 -0,54 -0,50 -0,52 -0,72 0,00

AIR -0,40 -0,58 0,65 -0,07 -0,54 -0,89 -0,14 -0,35 -1,74 -0,15 -0,60 -1,05 

DIR -0,19 -0,56 -0,56 -0,02 -0,51 -0,36 -0,33 -0,26 -0,29 0,36 -1,21 -0,62 

HIR -0,24 -0,54 -0,50 -0,15 -0,48 -0,43 -0,31 -0,32 -0,46 0,12 -2,12 -0,58 

MIR -0,02 -1,04 0,50 -0,18 -0,70 -0,50 -0,63 -0,06 -1,00 -0,26 -0,18 -0,50 

0-25 (cmH20) 0-35 (cmH20) 0-45 (cmH20) 0-55 (cmH20)
Adjusted ROI

L
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n
 1
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Table 4 – Mean error for each algorithm and respective 
standard deviation for the adjusted ROI scenario 

SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm)

AIR -0,22 -0,52 -0,49 0,40 0,17 0,74

DIR 0,06 -0,56 -0,47 0,30 0,32 0,22

HIR -0,31 -0,87 -0,53 0,44 0,67 0,13

MIR -0,14 -0,39 -0,31 0,38 0,41 0,46

Std Dev.Mean
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The whole volume scenario shows the most controversial 
results with the DIR method standing out for achieving 
worse results than the other algorithms, for lesion 1, and AIR 
for lesion 2. In the adjusted ROI scenario all the algorithms 
perform exceptionally well. Nevertheless, DIR still under 
performs in lesion 1 when compared to the other methods.  
More controversial are perhaps the graphical results of this 
test (illustrated in Figure 12), where we can clearly notice 
that, in spite of achieving a larger errors than the other 
approaches, DIR and HIR registration perform more 
accurate registrations when it comes to image warping. 

It is important to mention that this was meant to be an 
extreme deformation test, manually pressure was applied to 
achieve the desired deformation and so the applied force 
was not quantified. 

Discussion 

The previously detailed data show that all implemented 
image registration algorithms perform well under certain 
conditions. 

More specifically, when a ROI is defined encompassing 
the lesion boundaries all methods work exceptionally well, 
with mean errors under 1 mm, in all directions. In this 
scenario the affine algorithm outperforms the other 
automatic approaches (DIR and HIR) in some of the tests. 
On the other side, when the whole volume information is 
used the AIR method is incapable of achieving satisfactory 
results.  On its turn, the demons algorithm appears to 
achieve its best performance under these conditions. Figure 
13 exemplifies this relation between the implemented 

registrations for both scenarios. 

Given the formerly mentioned facts, and considering that 
affine consists in a global transformation, the poor outcomes 
of this algorithm in the whole volume scenario are expected 
once the algorithm is not capable of matching all the 
detected intensities and still preserve image topology. 
Demons, however, is able of performing local 

transformations and does not necessarily preserves image 
topology. This could also be the reason for the controversial 
outcomes in the deformation test, proving that Demons 
registration is able of performing more accentuated local 
deformations, for example, to the lesion boundaries and act 
with less power in the center region of the lesion, resulting in 
a small global translation. 

The implemented Hybrid algorithm, also demonstrates the 
ability to perform well in both scenarios and, although 
consisting on a two-step process with an affine 
transformation on the first step, results indicate that it is not 
negatively influenced by the same limitations as the AIR. 

From the implemented automated image registration 
algorithms, DIR and HIR appear to perform better and be 
more consistent independently of the presented scenario, 
being less influenced by the amount of information in the 
FOV. This could be a determinant factor in a clinical 
application, since the aim is to be capable of tracking the 
displacement associated to a moving lesion and therefore a 
small ROI cannot be used. 

All algorithms perform reasonably fast. Nevertheless, HIR 
involves the combination of both AIR and DIR and 
consequently has a higher computational load. 

Manual Image Registration was also performed for the 
previously mentioned tests. This was meant to work as both 
a control for the automated methods and an assessment of 
consistency for manually performed image registration. 
Registered outcomes show that MIR is able to perform 
consistently well with similar or fewer mean errors than the 
automated approaches. Nonetheless it is important to 
mention that it is user dependent time consuming task and 
that the user could be influenced by the automated results 
during the registration process. 

Finally, it is also important to note that ROI and point 
definition in the image registration application is a manual 
task and can, therefore, introduce some variability to the 
performed tests. Even so, the registered outcomes appear 
to be coherent and show little variability. 

Conclusions 

Upon the completion of this work we are able to conclude 
that using a robotic-US setup for adequate continuous 3D 
US image acquisition is feasible. 

The KUKA robotic arm proves to be capable of holding the 
US probe continuously in the same position while contrary 
forces are imposed by the 4D US Phantom breathing-like 
motion. The developed phantom also proves to be able to 
mimic physiological behavior expanding and contracting as 
inflated air pressure varies causing the ‘liver-like’ tumors to 
move and deform accordingly, and providing a good testing 
tool for preliminary tests and system calibration. 
Furthermore, it was shown during this experiment that 
breathing imposed tumor displacements are consistent with 
the expected physiological behavior, being more expressive 
in the SI direction. 

As for the employment of non-rigid image registration 
algorithms for tumor tracking, it was shown that all the 
tested algorithms are able to perform with good level of 
accuracy when a ROI encompassing the lesion boundaries 
is defined. However, when the whole volume is used, AIR 
fails to adequately track the lesion. Both DIR and HIR 
indicate to have the largest potential to work under any 
scenario though, the implementation of a two-step algorithm 
(HIR) does not necessarily outperform the other methods 
and increases computational load without clear benefit. 
Demons method alone demonstrates to be the most 
adequate for the proposed application, presenting the 

Table 5- Registration errors achieved from the deformation test for 
both scenarios, all registration methods and for lesion 1 and 2. 

SI (mm) AP (mm) ML (mm) SI (mm) AP (mm) ML (mm)

AIR 0,71 -1,90 0,87 0,03 0,18 0,60

DIR 2,66 0,05 0,09 0,69 0,83 -0,35 

HIR 2,06 0,56 -0,39 -0,19 -0,63 -0,10 

MIR 0,18 -0,59 0,00 0,26 -0,76 0,00

AIR 0,60 -8,97 -2,02 -0,43 -0,03 -1,51 

DIR 0,75 -0,79 -0,67 -0,06 0,13 -0,02 

HIR 0,28 -1,98 -0,25 -0,30 0,29 -0,70 

MIR -0,56 0,36 -0,50 -0,42 0,42 -0,50 

Deformation Test
Le

si
o

n
 1

Whole Image Adjusted ROI
Le

si
o

n
 2

Figure 12 - Deformation registrations, for both lesions using the four 
implemented registration methods. 

Figure 13 - Registration performance of the implemented methods, for both 
scenarios (0-55 cmH2O test). 
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possibility to overcome the use of FM as surrogates for 
IGRT techniques.  

Further developments could be made to this US-robotic 
setup adding, for example, force control algorithms to the 
robotic arm in order to ensure patient safety or remote probe 
manipulation for fast small adjustments in the US image 
acquisition. More tests should be made to the performance 
of the DIR method in other scenarios, with different lesions 
or with higher displacements. Finally, this robotic assisted 
tool can only be considered adequate for clinical use after 
appropriate validation in Human subjects and, given the 
relevance of this application for IGRT techniques, further 
efforts should be made in this direction. 
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